Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Front Immunol ; 14: 1115552, 2023.
Article in English | MEDLINE | ID: covidwho-2255878

ABSTRACT

Serving as the guardians of small intestine, Paneth cells (PCs) play an important role in intestinal homeostasis maintenance. Although PCs uniquely exist in intestine under homeostasis, the dysfunction of PCs is involved in various diseases not only in intestine but also in extraintestinal organs, suggesting the systemic importance of PCs. The mechanisms under the participation of PCs in these diseases are multiple as well. The involvements of PCs are mostly characterized by limiting intestinal bacterial translocation in necrotizing enterocolitis, liver disease, acute pancreatitis and graft-vs-host disease. Risk genes in PCs render intestine susceptible to Crohn's disease. In intestinal infection, different pathogens induce varied responses in PCs, and toll-like receptor ligands on bacterial surface trigger the degranulation of PCs. The increased level of bile acid dramatically impairs PCs in obesity. PCs can inhibit virus entry and promote intestinal regeneration to alleviate COVID-19. On the contrary, abundant IL-17A in PCs aggravates multi-organ injury in ischemia/reperfusion. The pro-angiogenic effect of PCs aggravates the severity of portal hypertension. Therapeutic strategies targeting PCs mainly include PC protection, PC-derived inflammatory cytokine elimination, and substituting AMP treatment. In this review, we discuss the influence and importance of Paneth cells in both intestinal and extraintestinal diseases as reported so far, as well as the potential therapeutic strategies targeting PCs.


Subject(s)
COVID-19 , Pancreatitis , Humans , Paneth Cells/physiology , Acute Disease , Intestines
2.
Front Psychol ; 13: 916669, 2022.
Article in English | MEDLINE | ID: covidwho-2142240

ABSTRACT

Due to the COVID-19 pandemic, most employees face increasing career-related stress, particularly those who work in multinational corporations (MNCs), because the international travel constraints prevent them from going back to their families. Hence, it is imperative to investigate the critical impact of employees' occupational burnout (OB) on career-related outcomes. In response, this research explores the moderating effect of OB on the relationships between career competencies (CCs) and career sustainability (CS). To achieve a more comprehensive understanding of relevant issues, we adopted a mixed-method research design that includes both qualitative and quantitative analyses. Findings indicate that all the three dimensions of CCs (i.e., reflective, communicative, and behavioral career competencies; RC, CC, and BC) were positively related to CS; moreover, OB negatively moderated the individual relationships of CC and BC with CS. The main contribution of this study is to enrich the existing career literature by addressing the critical moderating role of OB in the links of CC and BC individually with CS. Practical implications are also discussed in this study.

3.
Frontiers in psychology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-1971035

ABSTRACT

Due to the COVID-19 pandemic, most employees face increasing career-related stress, particularly those who work in multinational corporations (MNCs), because the international travel constraints prevent them from going back to their families. Hence, it is imperative to investigate the critical impact of employees’ occupational burnout (OB) on career-related outcomes. In response, this research explores the moderating effect of OB on the relationships between career competencies (CCs) and career sustainability (CS). To achieve a more comprehensive understanding of relevant issues, we adopted a mixed-method research design that includes both qualitative and quantitative analyses. Findings indicate that all the three dimensions of CCs (i.e., reflective, communicative, and behavioral career competencies;RC, CC, and BC) were positively related to CS;moreover, OB negatively moderated the individual relationships of CC and BC with CS. The main contribution of this study is to enrich the existing career literature by addressing the critical moderating role of OB in the links of CC and BC individually with CS. Practical implications are also discussed in this study.

4.
Immunity ; 55(6): 1105-1117.e4, 2022 06 14.
Article in English | MEDLINE | ID: covidwho-1889505

ABSTRACT

Global research to combat the COVID-19 pandemic has led to the isolation and characterization of thousands of human antibodies to the SARS-CoV-2 spike protein, providing an unprecedented opportunity to study the antibody response to a single antigen. Using the information derived from 88 research publications and 13 patents, we assembled a dataset of ∼8,000 human antibodies to the SARS-CoV-2 spike protein from >200 donors. By analyzing immunoglobulin V and D gene usages, complementarity-determining region H3 sequences, and somatic hypermutations, we demonstrated that the common (public) responses to different domains of the spike protein were quite different. We further used these sequences to train a deep-learning model to accurately distinguish between the human antibodies to SARS-CoV-2 spike protein and those to influenza hemagglutinin protein. Overall, this study provides an informative resource for antibody research and enhances our molecular understanding of public antibody responses.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , Antibody Formation , Humans , Pandemics , Spike Glycoprotein, Coronavirus
5.
Proc Natl Acad Sci U S A ; 119(11): e2122954119, 2022 03 15.
Article in English | MEDLINE | ID: covidwho-1721790

ABSTRACT

SignificanceSARS-CoV-2 continues to evolve through emerging variants, more frequently observed with higher transmissibility. Despite the wide application of vaccines and antibodies, the selection pressure on the Spike protein may lead to further evolution of variants that include mutations that can evade immune response. To catch up with the virus's evolution, we introduced a deep learning approach to redesign the complementarity-determining regions (CDRs) to target multiple virus variants and obtained an antibody that broadly neutralizes SARS-CoV-2 variants.


Subject(s)
Broadly Neutralizing Antibodies/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Broadly Neutralizing Antibodies/pharmacology , COVID-19 Vaccines/immunology , Complementarity Determining Regions , Deep Learning , Epitopes/immunology , Humans , Immunotherapy/methods , Neutralization Tests/methods , Protein Domains , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
6.
J Biol Chem ; 298(2): 101584, 2022 02.
Article in English | MEDLINE | ID: covidwho-1699145

ABSTRACT

With the outbreak of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), coronaviruses have begun to attract great attention across the world. Of the known human coronaviruses, however, Middle East respiratory syndrome coronavirus (MERS-CoV) is the most lethal. Coronavirus proteins can be divided into three groups: nonstructural proteins, structural proteins, and accessory proteins. While the number of each of these proteins varies greatly among different coronaviruses, accessory proteins are most closely related to the pathogenicity of the virus. We found for the first time that the ORF3 accessory protein of MERS-CoV, which closely resembles the ORF3a proteins of severe acute respiratory syndrome coronavirus and SARS-CoV-2, has the ability to induce apoptosis in cells in a dose-dependent manner. Through bioinformatics analysis and validation, we revealed that ORF3 is an unstable protein and has a shorter half-life in cells compared to that of severe acute respiratory syndrome coronavirus and SARS-CoV-2 ORF3a proteins. After screening, we identified a host E3 ligase, HUWE1, that specifically induces MERS-CoV ORF3 protein ubiquitination and degradation through the ubiquitin-proteasome system. This results in the diminished ability of ORF3 to induce apoptosis, which might partially explain the lower spread of MERS-CoV compared to other coronaviruses. In summary, this study reveals a pathological function of MERS-CoV ORF3 protein and identifies a potential host antiviral protein, HUWE1, with an ability to antagonize MERS-CoV pathogenesis by inducing ORF3 degradation, thus enriching our knowledge of the pathogenesis of MERS-CoV and suggesting new targets and strategies for clinical development of drugs for MERS-CoV treatment.


Subject(s)
Apoptosis , Coronavirus Infections/metabolism , Middle East Respiratory Syndrome Coronavirus/metabolism , Tumor Suppressor Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Viral Nonstructural Proteins/metabolism , A549 Cells , Cell Line , Computational Biology , Coronavirus Infections/physiopathology , Coronavirus Infections/virology , Epithelial Cells/physiology , Epithelial Cells/virology , HEK293 Cells , Host-Pathogen Interactions , Humans
7.
Nat Commun ; 12(1): 6728, 2021 11 18.
Article in English | MEDLINE | ID: covidwho-1526074

ABSTRACT

Genes in SARS-CoV-2 and other viruses in the order of Nidovirales are expressed by a process of discontinuous transcription which is distinct from alternative splicing in eukaryotes and is mediated by the viral RNA-dependent RNA polymerase. Here, we introduce the DISCONTINUOUS TRANSCRIPT ASSEMBLYproblem of finding transcripts and their abundances given an alignment of paired-end short reads under a maximum likelihood model that accounts for varying transcript lengths. We show, using simulations, that our method, JUMPER, outperforms existing methods for classical transcript assembly. On short-read data of SARS-CoV-1, SARS-CoV-2 and MERS-CoV samples, we find that JUMPER not only identifies canonical transcripts that are part of the reference transcriptome, but also predicts expression of non-canonical transcripts that are supported by subsequent orthogonal analyses. Moreover, application of JUMPER on samples with and without treatment reveals viral drug response at the transcript level. As such, JUMPER enables detailed analyses of Nidovirales transcriptomes under varying conditions.


Subject(s)
COVID-19/genetics , SARS-CoV-2/genetics , Alternative Splicing/genetics , Gene Expression Profiling , Humans , Transcriptome/genetics
8.
PLoS Comput Biol ; 17(8): e1009284, 2021 08.
Article in English | MEDLINE | ID: covidwho-1341479

ABSTRACT

Modeling the impact of amino acid mutations on protein-protein interaction plays a crucial role in protein engineering and drug design. In this study, we develop GeoPPI, a novel structure-based deep-learning framework to predict the change of binding affinity upon mutations. Based on the three-dimensional structure of a protein, GeoPPI first learns a geometric representation that encodes topology features of the protein structure via a self-supervised learning scheme. These representations are then used as features for training gradient-boosting trees to predict the changes of protein-protein binding affinity upon mutations. We find that GeoPPI is able to learn meaningful features that characterize interactions between atoms in protein structures. In addition, through extensive experiments, we show that GeoPPI achieves new state-of-the-art performance in predicting the binding affinity changes upon both single- and multi-point mutations on six benchmark datasets. Moreover, we show that GeoPPI can accurately estimate the difference of binding affinities between a few recently identified SARS-CoV-2 antibodies and the receptor-binding domain (RBD) of the S protein. These results demonstrate the potential of GeoPPI as a powerful and useful computational tool in protein design and engineering. Our code and datasets are available at: https://github.com/Liuxg16/GeoPPI.


Subject(s)
Amino Acid Substitution , Models, Chemical , Proteins/metabolism , Point Mutation , Protein Binding , Proteins/chemistry , Proteins/genetics
9.
World J Clin Cases ; 9(16): 3796-3813, 2021 Jun 06.
Article in English | MEDLINE | ID: covidwho-1257158

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is spreading at an alarming rate, and it has created an unprecedented health emergency threatening tens of millions of people worldwide. Previous studies have indicated that SARS-CoV-2 ribonucleic acid could be detected in the feces of patients even after smear-negative respiratory samples. However, demonstration of confirmed fecal-oral transmission has been difficult. Clinical studies have shown an incidence rate of gastrointestinal (GI) symptoms ranging from 2% to 79.1% in patients with COVID-19. They may precede or accompany respiratory symptoms. The most common GI symptoms included nausea, diarrhea, and abdominal pain. In addition, some patients also had liver injury, pancreatic damage, and even acute mesenteric ischemia/thrombosis. Although the incidence rates reported in different centers were quite different, the digestive system was the clinical component of the COVID-19 section. Studies have shown that angiotensin-converting enzyme 2, the receptor of SARS-CoV-2, was not only expressed in the lungs, but also in the upper esophagus, small intestine, liver, and colon. The possible mechanism of GI symptoms in COVID-19 patients may include direct viral invasion into target cells, dysregulation of angiotensin-converting enzyme 2, immune-mediated tissue injury, and gut dysbiosis caused by microbiota. Additionally, numerous experiences, guidelines, recommendations, and position statements were published or released by different organizations and societies worldwide to optimize the management practice of outpatients, inpatients, and endoscopy in the era of COVID-19. In this review, based on our previous work and relevant literature, we mainly discuss potential fecal-oral transmission, GI manifestations, abdominal imaging findings, relevant pathophysiological mechanisms, and infection control and prevention measures in the time of COVID-19.

10.
Int J Biol Macromol ; 176: 1-12, 2021 Apr 15.
Article in English | MEDLINE | ID: covidwho-1062378

ABSTRACT

SARS-CoV-2 is the etiological agent responsible for the ongoing pandemic of coronavirus disease 2019 (COVID-19). The main protease of SARS-CoV-2, 3CLpro, is an attractive target for antiviral inhibitors due to its indispensable role in viral replication and gene expression of viral proteins. The search of compounds that can effectively inhibit the crucial activity of 3CLpro, which results to interference of the virus life cycle, is now widely pursued. Here, we report that epigallocatechin-3-gallate (EGCG), an active ingredient of Chinese herbal medicine (CHM), is a potent inhibitor of 3CLpro with half-maximum inhibitory concentration (IC50) of 0.874 ± 0.005 µM. In the study, we retrospectively analyzed the clinical data of 123 cases of COVID-19 patients, and found three effective Traditional Chinese Medicines (TCM) prescriptions. Multiple strategies were performed to screen potent inhibitors of SARS-CoV-2 3CLpro from the active ingredients of TCMs, including network pharmacology, molecular docking, surface plasmon resonance (SPR) binding assay and fluorescence resonance energy transfer (FRET)-based inhibition assay. The SPR assay showed good interaction between EGCG and 3CLpro with KD ~6.17 µM, suggesting a relatively high affinity of EGCG with SARS-CoV-2 3CLpro. Our results provide critical insights into the mechanism of action of EGCG as a potential therapeutic agent against COVID-19.


Subject(s)
COVID-19 Drug Treatment , Catechin/analogs & derivatives , Coronavirus 3C Proteases/antagonists & inhibitors , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Adult , Antiviral Agents/administration & dosage , Antiviral Agents/pharmacology , COVID-19/epidemiology , COVID-19/metabolism , COVID-19/virology , Catechin/administration & dosage , Catechin/pharmacology , China/epidemiology , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/metabolism , Female , Fluorescence Resonance Energy Transfer/methods , Humans , Male , Medicine, Chinese Traditional/methods , Middle Aged , Molecular Docking Simulation/methods , Pandemics , Protease Inhibitors/administration & dosage , Protease Inhibitors/pharmacology , Retrospective Studies , Virus Replication/drug effects , Young Adult
11.
Rev Med Virol ; 31(2): e2168, 2021 03.
Article in English | MEDLINE | ID: covidwho-763331

ABSTRACT

The novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread globally to over 200 countries with more than 23 million confirmed cases and at least 800,000 fatalities as of 23 August 2020. Declared a pandemic on March 11 by World Health Organization, the disease caused by SARS-CoV-2 infection, called coronavirus disease 2019 (COVID-19), has become a global public health crisis that challenged all national healthcare systems. This review summarized the current knowledge about virologic and pathogenic characteristics of SARS-CoV-2 with emphasis on potential immunomodulatory mechanism and drug development. With multiple emerging technologies and cross-disciplinary approaches proving to be crucial in our global response against COVID-19, the application of PROteolysis TArgeting Chimeras strategy, CRISPR-Cas9 gene editing technology, and Single-Nucleotide-Specific Programmable Riboregulators technology in developing antiviral drugs and detecting infectious diseases are proposed here. We also discussed the available but still limited epidemiology of COVID-19 as well as the ongoing efforts on vaccine development. In brief, we conducted an in-depth analysis of the pathogenesis of SARS-CoV-2 and reviewed the therapeutic options for COVID-19. We also proposed key research directions in the future that may help uncover more underlying molecular mechanisms governing the pathology of COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Antiviral Agents/therapeutic use , Humans , Pandemics , Public Health , SARS-CoV-2/genetics
12.
Aging (Albany NY) ; 12(13): 12504-12516, 2020 07 11.
Article in English | MEDLINE | ID: covidwho-640201

ABSTRACT

The mortality rate of elderly patients with Coronavirus Disease 2019 (COVID-19) was significantly higher than the overall mortality rate. However, besides age, leading death risk factors for the high mortality in elderly patients remain unidentified. This retrospective study included 210 elderly COVID-19 patients (aged ≥ 65 years), of whom 175 patients were discharged and 35 died. All deceased patients had at least one comorbidity. A significantly higher proportion of patients in the deceased group had cardiovascular diseases (49% vs. 20%), respiratory diseases (51% vs. 11%), chronic kidney disease (29% vs. 5%) and cerebrovascular disease (20% vs. 3%) than that in the discharged group. The median levels of C-reactive protein (125.8mg/L vs. 9.3mg/L) and blood urea nitrogen (7.2mmol/L vs. 4.4mmol/L) were significantly higher and median lymphocyte counts (0.7×109/L vs. 1.1×109/L) significantly lower in the deceased group than those in the discharged group. The survival curve analysis showed that higher C-reactive protein (≥5mg/L) plus any other abnormalities of lymphocyte, blood urea nitrogen or lactate dehydrogenase significantly predicted poor prognosis of COVID-19 infected elderly patients. This study revealed that the risk factors for the death in these elderly patients included comorbidities, increased levels of C-reactive protein and blood urea nitrogen, and lymphopenia during hospitalization.


Subject(s)
Coronavirus Infections/epidemiology , Pneumonia, Viral/epidemiology , Aged , Aged, 80 and over , Betacoronavirus , Blood Urea Nitrogen , C-Reactive Protein/metabolism , COVID-19 , China , Comorbidity , Coronavirus Infections/complications , Coronavirus Infections/immunology , Female , Humans , Lymphopenia/virology , Male , Pandemics , Pneumonia, Viral/complications , Pneumonia, Viral/immunology , Prognosis , Retrospective Studies , Risk Factors , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL